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Abstract We develop a family of six methods for the numerical integration of the
Schrödinger equation and related initial value problems with oscillating solution. Three
of the methods are constructed so that they are P-stable, using the methodology of
Wang (Comp Phys Comm 171(3):162–174, 2005). Also two of these three methods
are trigonometrically fitted with trigonometric orders one and two. The other three
methods are constructed so that they are trigonometrically fitted with orders one, two
and three. We show that there is an equivalence between the three pairs of methods,
as if the property of P-stability can be substituted by an extra trigonometric order,
that is the P-stable method is equivalent to the method with trigonometric order one,
the P-stable method with trigonometric order one is equivalent to the method with
order two, and the P-stable method with order two is equivalent to the method with
order three. There is a condition that we choose the same frequency for the P-stability
test problem y′′ = −θ2 y and the functions that the method has to integrate exactly,
in order to be trigonometrically fitted: {cos(ωx), sin(ωx), x cos(ωx), x sin(ωx),
x2 cos(ωx), x2 sin(ωx)}. A stability analysis and a local truncation error analysis are
performed on the methods and also the v–s diagrams are produced, where v = ω h and
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s = θ h. Finally the methods are applied to IVPs with oscillating solutions, such as the
one-dimensional time independent Schrödinger equation and the nonlinear problem.

Keywords Numerical integration · Hybrid methods · Schrödinger equation ·
P-stability

1 Introduction

The one-dimensional time-independent Schrödinger equation is given by:

y′′(x) =
(

l(l + 1)

x2 + V (x) − E

)
y(x) (1)

where l(l+1)

x2 is the centrifugal potential, V (x) is the potential, E is the energy and

W (x) = l(l+1)

x2 + V (x) is the effective potential. It is valid that lim
x→∞ V (x) = 0 and

therefore lim
x→∞ W (x) = 0.

We consider E > 0 and divide [0,∞) into subintervals [ai , bi ] so that W (x) is a
constant with value W̄i . After this the problem (1) can be expressed by the approxi-
mation

y′′
i = (W̄ − E) yi , whose solution is (2)

yi (x) = Ai exp
(√

W̄ − E x
)

+ Bi exp
(
−

√
W̄ − E x

)
,

Ai , Bi ∈ R.

The numerical solution of the Schrödinger equation and related problems has attrac-
ted many researchers the last decades. Some multistep methods have been constructed
by Raptis and Allison, who have developed a two-step exponentially-fitted method
of order four in [49], by Kalogiratou and Simos, who have constructed a two-step
P-stable exponentially-fitted method of order four in [30], by Anastassi and Simos,
who have constructed a six-step P-stable trigonometrically-fitted method in [6] and
by Panopoulos, Anastassi and Simos, who have constructed two optimized eight-step
methods with high or infinite order of phase-lag in [40].

Some other notable multistep methods for the numerical solution of oscillating
IVPs have been developed by Chawla and Rao [20], who produced a three-stage, two-
Step P-stable method with minimal phase-lag and order six and by Henrici [23], who
produced a four-step symmetric method of order six.

Van de Vyver has developed some optimized Numerov-type methods in [89–91].
Also some recent research work in numerical methods can be found in [1,15–

19,24,25,37,43,71,73,88] and [2–5,7–14,22,27–29,31–34,38,39,41,42,44–48,50–
70,72,74–77,79–87,92,93,95].
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2 Theory

2.1 Exponential symmetric multistep methods

For the numerical solution of the initial value problem

y = f (x, y), where y′(x) is omitted (3)

multistep methods of the form

m∑
i=0

ai yn+i = h2
m∑

i=0

bi f (xn+i , yn+i ) (4)

with m steps can be used over the equally spaced intervals {xi }m
i=0 ∈ [a, b] and

h = |xi+1 − xi |, i = 0(1)m − 1.
If the method is symmetric then ai = am−i and bi = bm−i , i = 0(1)�m

2 �.
Method (4) is associated with the operator

L(x) =
m∑

i=0

ai u(x + ih) − h2
m∑

i=0

bi u
′′(x + ih) (5)

where u ∈ C2.

Definition 1 The multistep method (5) is called algebraic (or exponential) of order p
if the associated linear operator L vanishes for any linear combination of the linearly
independent functions 1, x, x2, . . . , x p+1 (or eω0x , eω1x , . . ., eωp+1x , where ωi |i =
0(1)p + 1 are real or complex numbers).

Remark 1 [36] If ωi = ω for i = 0, 1, . . . , n, n � p+1, then the operator L vanishes
for any linear combination of eωx , xeωx , x2eωx , . . ., xneωx , eωn+1x , . . ., eωp+1x .

Remark 2 [36] Every exponential multistep method corresponds in a unique way to
an algebraic method (by setting ωi = 0 for all i), which is called the classical method.

When we use an imaginary number for frequency, that is Iω, then eIωx can be
expanded to cos(ωx)+ I sin(ωx), so we refer to a method that integrates exactly these
functions as a trigonometrical multistep method with trigonometric order p. However
we may refer to such a method as an exponential method, being a more general case
that includes the special case of complex ω.

2.2 Stability analysis of symmetric multistep methods

We give the definitions for the stability of symmetric linear multistep methods accor-
ding to Lambert and Watson theory [35] as well as some definitions from the paper of
Coleman and Ixaru for the stability of methods with variable coefficients [21].
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We apply the symmetric linear m-step method (4) to the scalar test equation

y′′ = −θ2 y (6)

and then we solve the corresponding characteristic equation, which has m characteristic
roots λi , i = 0(1)m − 1.

Definition 2 [35] If the characteristic roots satisfy the conditions |λi | � 1, i =
0(1)m − 1 for all s < s0, where s = θh, then we say that the method has inter-
val of periodicity (0, s2

0 ).

Definition 3 [35] Method (4) is called P-stable if its interval of periodicity is (0,∞).

We deliberately use frequency θ for the stability analysis that is different from
frequency ω used for exponential-fitting. In this way we will be able to produce the
v–s plane, which gives the stability regions of the method.

Definition 4 [21] A region of stability for a multistep method is a region of the v–s
plane, throughout which the roots of the corresponding characteristic equation satisfy
the conditions of Definition 2. If the conditions are valid for the equality only then that
curve is called stability boundary.

If we set r = v
s = ω

θ
, then we can say that the principal interval of periodicity

is represented by the line segment from the beginning of the axes to the intersection
of line v = rs and the stability boundary. Secondary intervals of periodicity can be
defined along the line v = rs further from the beginning of the axes, but they are less
important since the method must always be stable around the area where h → 0.

2.3 A Methodology for developing P-stable symmetric multistep methods

A methodology, developed by Wang (see [94]), for producing P-stable symmetric
multistep methods is given below. For a symmetric 2m-step method of the form

y(x + mh) + y(x − mh) − 2ay(x)

=
m−1∑
i=1

ci (y(x + ih) + y(x − ih)) + h2
m∑

i=0

bi
(
y′′(x + ih) + y′′(x − ih)

)
(7)

we force the 2m − 1 characteristic roots to have the form

{λ2k, λ2k+1} = eI 2kπ
m {eI hθ , e−I hθ }, k = 0, 1, . . . , m − 1 (8)

3 Development

We will construct a family of methods with two stages and two steps.
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The general form of the method is given below:

y(x) = y(x) − a0 h2 ( f (x + h) − 2 f (x) + f (x − h))

y(x + h) = 2 y(x) − y(x − h) + h2 (b0
(

f (x + h) + f (x − h)) + b1 f (x)
)

(9)

and it’s applied to the IVP y′′ = f (x, y), where y′(x) is omitted.

3.1 Construction of a P-stable method

According to Wang’s methodology for developing P-stable symmetric 2m-step
methods [94], and as it was briefly mentioned in (2.3), if λi , i = 1 . . . n are the n
characteristic roots of the method, then we force the roots to have the form

{λ2k, λ2k+1} = eI 2kπ
m {eI hθ , e−I hθ }, k = 0, 1, . . . , m − 1. (10)

In this case we have a 2-step method, as seen in (9), even though the method has
a second stage. This will be clearer, when we see the characteristic equation. If we
substitute f (x) = y′′(x) into the second stage, then the method will have the following
form

y(x + h) + y(x − h) − 2 y(x) + a0b1h4
(

y(4)(x + h) − 2 y(4)(x) + y(4)(x − h)
)

+ (−b0 y′′(x + h) − b0 y′′(x − h) − b1 y′′(x)
)

h2 = 0 (11)

It is more efficient to satisfy the conditions for algebraic order first and then the
conditions for all other properties, including P-stability. All the information we need
is how many coefficients will be necessary for the other properties other than the
algebraic order. We know in advance that, for this type of method, due its symmetry,
we only need one coefficient to satisfy the condition of P-stability.1

We use two of the three coefficients, in order to increase the algebraic order: b0 and
b1. By requiring that the method integrates exactly the sequence of monomials

{1, x, x2, . . . , x p}

for the highest possible p, then we acquire these two equations

2 b0 + b1 − 1 = 0 and b0 − 1

12
= 0,

which give

b0 = 1

12
and b1 = 5

6
. (12)

1 Even if we used only one coefficient for the algebraic conditions, leaving two for the P-stability, we would
end up having a free parameter, which again would be used to increase the algebraic order.
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Now we need to determine a0, in order to satisfy the condition for P-stability
according to Wang. So, if we substitute y′′(x) = −θ2 y(x) and then θh = s, so the
method takes the form

1

12
y(x + h)

(
s2 + 10 a0s4 + 12

)
+ y(x)

(
−5

3
a0s4 + 5

6
s2 − 2

)

+ 1

12
y(x − h)

(
s2 + 10 a0s4 + 12

)
= 0 (13)

The characteristic equation of (13) is

1

12
λ2

(
s2 + 10 a0s4 + 12

)
+ λ

(
−5

3
a0s4 + 5

6
s2 − 2

)

+ 1

12

(
s2 + 10 a0s4 + 12

)
= 0 (14)

We now substitute λ1 = eIθh = eI s and λ2 = e−Iθh = e−I s and we have two
equations that must be satisfied:

5

3

((
6

5
+ 1

10
s2 + a0s4

)
cos (s) − a0s4 + 1

2
s2 − 6

5

)
(cos (s) + I sin (s)) = 0

5

3

((
6

5
+ 1

10
s2 + a0s4

)
cos (s) − a0s4 + 1

2
s2 − 6

5

)
(cos (s) − I sin (s)) = 0

(15)

As we can see, when solving for a0, only one equation is necessary, so we have

a0 = − 1

10

12 cos (s) + cos (s) s2 + 5 s2 − 12

s4 (cos (s) − 1)
(16)

We remind that s = θh, where θ is the frequency used in the test problem y′′ =
−θ2 y.

After determining all three coefficients, we conclude that the order of the method
is six. For the error analysis of the method see 3.11.

3.2 Construction of a method with trigonometric order one

Beginning with the same general form (9), we develop a trigonometrically fitted
method with trigonometric order one. We already know, because of the symmetry
of the method, that we only need one equation, so that the method integrates exactly
the functions {cos(ωx), sin(ωx)}. This means that only one free coefficient is neces-
sary, so that the method has trigonometric order one.
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We substitute f (x) = y′′(x) into the final stage, then the method will have the
following form

y(x + h) + y(x − h) − 2 y(x) + a0b1h4
(

y(4)(x + h) − 2 y(4)(x) + y(4)(x − h)
)

+ (−b0 y′′(x + h) − b0 y′′(x − h) − b1 y′′(x)
)

h2 = 0 (17)

As in 3.1, we use two of the three coefficients, b0 and b1, in order to increase
the algebraic order. By requiring that the method integrates exactly the sequence of
monomials

{1, x, x2, . . . , x p}

for the highest possible p, then we acquire these two equations

2 b0 + b1 − 1 = 0 and b0 − 1

12
= 0,

which give

b0 = 1

12
and b1 = 5

6
. (18)

Now we need to determine a0, so that the method integrates exactly eIωx or equi-
valently {cos(ωx), sin(ωx)}. By applying y(x) = eIωx to method (17) and then by
dividing by eIωx we get:

(
2 b1a0v

4 + 2 b0v
2 + 2

)
cos (v) + b1v

2 − 2 b1a0v
4 − 2 = 0 (19)

and if we also apply the values of b0 and b1, then we get:

1

6

(
12 + 10 a0v

4 + v2
)

cos (v) − 5

3
a0v

4 − 2 + 5

6
v2 (20)

By solving the above equation, we determine a0:

a0 = − 1

10

12 cos (v) + cos (v) v2 + 5 v2 − 12

v4 (cos (v) − 1)
(21)

Please note that even if we choose another coefficient other than a0 for the trigono-
metric fitting, a0 will still be the only variable coefficient, while the other two remain
constant, and all three will have the same values as above. This happens because of
the way the three coefficients depend on each other through the three equations.
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3.3 Equivalence between the P-stable method and the trigonometrically
fitted method

We can see that by using two different techniques, one introduced by Wang [94]
for developing P-stable methods and another for developing trigonometrically fitted
methods, we constructed the same method.

The coefficients of the trigonometrically fitted method developed in 3.2 are the
same as the coefficients of the P-stable method developed 3.1, assuming that we use
the same frequency θ = ω ⇒ s = v.

We remind that s = θh, where θ is the frequency used in the test problem y′′ =
−θ2 y, while v = ωh, where ω is the frequency used in eIωx , which is the function
that the trigonometrically fitted method integrates exactly.

As it comes to the equivalence of the two methods, the choice of the frequency θ

or ω and thus s or v is irrelevant, since a0 (the only variable coefficient) depends only
on either s or v.

The Taylor expansion series of a0 is of course the same for the two methods:

a0 = 1

200
+ 1

5,040
v2 + 1

144,000
v4 + 1

4,435,200
v6 + 691

99, 066, 240, 000
v8

+ 1

4,790,016,000
v10 + 3,617

592,812,380,160,000
v12

+ 43,867

250,445,794,959,360,000
v14 (22)

3.4 Construction of a P-stable method with trigonometric order one

Following the same concept as in 3.1, we develop a P-stable method using Wang’s
methodology, but we also provide the method with trigonometric order one.

After the substitution of f (x) = y′′(x) into the final stage, the method will have
the following form, which of course is the same as in 3.1:

y(x + h) + y(x − h) − 2 y(x) + a0b1h4
(

y(4)(x + h) − 2 y(4)(x) + y(4)(x − h)
)

+
(
−b0 y(2)(x + h) − b0 y(2)(x − h) − b1 y(2)(x)

)
h2 = 0 (23)

For the construction of this method, apart from a0, that it is needed for the satisfac-
tion of the P-stability condition, we will use another coefficient, b0, for the achievement
of trigonometric fitting. Again, due to the symmetry of the method, only one condi-
tion is capable of making the method integrate exactly both necessary functions for
trigonometric order one: {cos(ωx), sin(ωx)}.

The only free coefficient for the increase of the algebraic order is b1. By requiring
that the method integrates exactly the sequence of monomials

{1, x, x2, . . . , x p}
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for the highest possible p, then we acquire one equation:

2 b0 + b1 − 1 = 0 (24)

We need the method to integrate exactly eIωx or equivalently {cos(ωx), sin(ωx)}.
By applying the substitution y(x) = eIωx to method (23) and then by dividing by
eIωx we get:

(
2 + (2 − 4 b0) a0v

4 + 2 b0v
2
)

cos (v) − 2

+ (−2 + 4 b0) a0v
4 + (1 − 2 b0) v2 = 0 (25)

For the achievement of P-stability we substitute y′′(x) = −θ2 y(x) and then θh = s,
so the method takes the form

(
1 + a0 (1 − 2 b0) s4 + b0s2

)
y (x + h)

+4 y (x)

(
−1

2
+

(
−1

2
+ b0

)
a0s4 +

(
1

4
− 1

2
b0

)
s2

)

+
(

1 + a0 (1 − 2 b0) s4 + b0s2
)

y (x − h) = 0 (26)

The characteristic equation of (26) is

(
b0s2 + a0s4 − 2 a0s4b0 + 1

)
λ2 +

(
s2 − 2 a0s4 + 4 a0s4b0 − 2 − 2 b0s2

)
λ

+b0s2 + a0s4 − 2 a0s4b0 + 1 = 0 (27)

We now substitute λ1 = eIθh = eI s and λ2 = e−Iθh = e−I s and we have two
equations that must be satisfied:

−4 (cos (s) + I sin (s)) A = 0 and

−4 (cos (s) − I sin (s)) A = 0, where (28)

A =
((

−1

2
+

(
−1

2
+ b0

)
a0s4 − 1

2
b0s2

)
cos (s)

+ 1

2
−

(
−1

2
+ b0

)
a0s4 +

(
1

2
b0 − 1

4

)
s2

)
(29)

which are both satisfied for A = 0. By solving the system of (28) and (25) we get:
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dsa0 = a0,num

a0,den
, b0 = b0,num

b0,den
, b1 = b1,num

b1,den
, where

a0,num =
((

−2 v2 + 2 s2
)

cos (s) +
(

2 − s2
)

v2 − 2 s2
)

cos (v)

+
((

2 + s2
)

v2 − 2 s2
)

cos (s) − 2 v2 + 2 s2

a0,den =
((

2 s2 + 4
)

v4 − 4 s4
)

cos (s) + 4 s4 − 4 v4

+
(((

−2 s2 − 4
)

v4 + 2 s4v2 + 4 s4
)

cos (s) + 4 v4 − 2 s4v2 − 4 s4
)

cos (v)

b0,num =
((

2 v4 − 2 s4
)

cos (s) +
(
−2 + s2

)
v4 + 2 s4

)
cos (v)

+
(
−2 v4 + 2 s4 − s4v2

)
cos (s) +

(
2 − s2

)
v4 + s4v2 − 2 s4

b0,den = 2 v2 (−v + s) (v + s) (cos (s) − 1) (cos (v) − 1) s2

b1,num =
(((

−2 − s2
)

v4 + s4v2 + 2 s4
)

cos (s) + 2 v4 − s4v2 − 2 s4
)

cos (v)

+
((

2 + s2
)

v4 − 2 s4
)

cos (s) + 2 s4 − 2 v4

b1,den = v2 (−v + s) (v + s) (cos (s) − 1) (cos (v) − 1) s2 (30)

We remind that s = θh, where θ is the frequency used in the test problem y′′(x) =
−θ2 y(x).

After determining all three coefficients, we conclude that the order of the method
is six. For the error analysis see 3.11.

3.5 Construction of a method with trigonometric order two

Beginning with the same general form (9), we develop a trigonometrically fitted
method with trigonometric order two. We need two equations, so that the method inte-
grates exactly the set of functions {cos(ωx), sin(ωx), x cos(ωx), x sin(ωx)}. This
means that two (due to symmetry) free coefficients are necessary for trigonometric
fitting.

By requiring that the simplified form of the method

y(x + h) + y(x − h) − 2 y(x) + a0b1h4
(

y(4)(x + h) − 2 y(4)(x) + y(4)(x − h)
)

+ (−b0 y′′(x + h) − b0 y′′(x − h) − b1 y′′(x)
)

h2 = 0 (31)

integrates exactly the sequence of monomials {1, x, x2, . . . , x p} for the highest pos-
sible p, we acquire one equation:

2 b0 + b1 − 1 = 0 (32)
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Now we apply y(x) = eIωx to method (31) and divide by eIωx and get the equation:

(
2 + (2 − 4 b0) a0v

4 + 2 b0v
2
)

cos (v) − 2

+ (−2 + 4 b0) a0v
4 + (1 − 2 b0) v2 = 0 (33)

and we also apply y(x) = x eIωx and after the division by eIωx we get:

1

2

A

v (cos (v) − 1)
= 0, where

A =
(

4I
(

2 + b0v
2
)

h cos (v) +
(
−8I + v3 + (−4I b0 + 4I ) v2

)
h − xv3

)
e−Iv

+
(

4I
(

2 + b0v
2
)

h cos (v) +
(
−8I − v3 + (−4I b0 + 4I ) v2

)
h − xv3

)
eIv

+
((

−16I + (−4I − 8I b0) v2
)

h + 2 xv3
)

cos (v)

+8I
(

2 + (−1/2 + b0) v2
)

h (34)

This expression has only imaginary part, which can be simplified to

h
(((

8 + 4 b0v
2
)

cos (v) − 8 + (2 − 4 b0) v2
)

sin (v) + v3 (cos (v) + 1)
)

v sin (v)
= 0

(35)

By solving the above equation, we determine the three coefficients:

a0 = 1

2

v3 cos (v) + v3 + 4 sin (v) cos (v) − 4 sin (v)(
8 sin (v) cos (v) + 2 v2 sin (v) cos (v) − 8 sin (v) + v3 cos (v) + v3

)
v2

b0 = −1

4

v3 cos (v) + v3 + 2 sin (v) v2 + 8 sin (v) cos (v) − 8 sin (v)

sin (v) v2 (cos (v) − 1)

b1 = 1

2

8 sin (v) cos (v) + 2 v2 sin (v) cos (v) − 8 sin (v) + v3 cos (v) + v3

sin (v) v2 (cos (v) − 1)
(36)

3.6 Equivalence between the P-stable method with trigonometric order
one and the method with trigonometric order two

We can see that the coefficients of the trigonometrically fitted method developed in
3.5 are the same as the coefficients of the P-stable method developed 3.4, assuming
that we use the same frequency θ = ω ⇒ s = v.

We remind that s = θh, where θ is the frequency used in the test problem y′′ =
−θ2 y, while v = ωh, where ω is the frequency used in xn eIωx , which are the functions
that the trigonometrically fitted method integrates exactly.

If cPS are the coefficients of the P-stable method and cEF are the corresponding
coefficients of the exponentially fitted method, then lim

s→v
cPS = cEF .
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The Taylor expansion series of the coefficients are given below:

a0 = 1

200
+ 1

2,520
v2 + 19

1,008,000
v4 + 21,149

34,927,200,000
v6

+ 10,471

1,089,728,640,000
v8 − 149,711

457,686,028,800,000
v10

− 840,406,661

23,341,987,468,800,000,000
v12− 24,605,927,681

13,659,731,066,741,760,000,000
v14

b0 = 1

12
− 1

6,048
v4 − 1

86,400
v6 − 1

1,774,080
v8 − 691

29,719,872,000
v10

− 1

1,149,603,840
v12 − 3,617

118,562,476,032,000
v14

b1 = 5

6
+ 1

3,024
v4 + 1

43,200
v6 + 1

887,040
v8 + 691

14,859,936,000
v10

+ 1

574,801,920
v12 + 3,617

59,281,238,016,000
v14 (37)

3.7 Construction of a P-stable method with trigonometric order two

This new method will have P-stability along with trigonometric order two.
After the substitution of f (x) = y′′(x) into the final stage, the method will take

the form:

y(x + h) + y(x − h) − 2 y(x) + a0b1h4
(

y(4)(x + h) − 2 y(4)(x) + y(4)(x − h)
)

+
(
−b0 y(2)(x + h) − b0 y(2)(x − h) − b1 y(2)(x)

)
h2 = 0 (38)

We need the method to integrate exactly the functions {cos(ωx), sin(ωx),
x cos(ωx), x sin(ωx)}. By applying y(x) = eIωx and y(x) = x eIωx to method
(38) and then by dividing by eIωx we get two equations that must be satisfied:

(
2 b1a0v

4 + 2 b0v
2 + 2

)
cos (v) + b1v

2 − 2 b1a0v
4 − 2 = 0

2 b1a0v
4 sin (v) + 2 sin (v) b0v

2 + 2 sin (v) − 4 cos (v) b0v

−2 b1v − 8 b1a0v
3 cos (v) + 8 b1a0v

3 = 0 (39)

For the achievement of P-stability we substitute y′′(x) = −θ2 y(x) and then θh = s,
so the method takes the form

y (x − h)
(

b0s2 + b1a0s4 + 1
)

+ y (x + h)
(

b0s2 + b1a0s4 + 1
)

−2 y (x)

(
−1

2
b1s2 + b1a0s4 + 1

)
= 0 (40)
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The characteristic equation of (40) is

λ2
(

b0s2 + b1a0s4 + 1
)

+
(
−2 b1a0s4 − 2 + b1s2

)
λ + b0s2 + b1a0s4 + 1 (41)

We now substitute λ1 = eIθh = eIs and λ2 = e−Iθh = e−Is and we have one
equation that must be satisfied:

2

((
b0s2 + b1a0s4 + 1

)
cos (s) − 1 − b1a0s4 + 1

2
b1s2

)
cos (s) (42)

a0 = 1

2

a0,num

a0,den
, b0 = −b0,num

b0,den
, b1 = 2

b1,num

b1,den
, where

a0,num = − cos(s)s2 sin(v)v − 2 cos(s)s2 cos(v) + 2 cos(s)s2

+ cos(s) sin(v)v3 + s2 sin(v)v + 2 s2(cos(v))2 − 2 s2 cos(v) − sin(v)v3

a0,den = 4 cos(s)s2v2(cos(v))2 − 8 cos(s)s2v2 cos(v) + 4 cos(s)s2v2

− cos(s)s4 sin(v)v − 2 cos(s)s4(cos(v))2 + 2 cos(s)s4 cos(v)

+ cos(s)v5 sin(v) − 2 cos(s)v4(cos(v))2 + 2 cos(s)v4 cos(v) + s4 sin(v)v

+2 s4(cos(v))2 − 2 s4 cos(v) − v5 sin(v) + 2 v4(cos(v))2 − 2 v4 cos(v)

b0,num = cos(s)v5 sin(v) − v5 sin(v) − 2 cos(s)v4 cos(v) + 2 v4 cos(v)

+2 v4 cos(s) − 2 v4 − 8 s2v2 cos(v) + 4 s2v2(cos(v))2 + 4 s2v2

+s4 sin(v)v − cos(s)s4 sin(v)v − 2 s4 + 2 cos(s)s4 + 2 s4 cos(v)

−2 cos(s)s4 cos(v)

b0,den = s2v3(sin(v) cos(s)v2 − v2 sin(v) + 2 v cos(s) − 2 cos(v)v cos(s)

+2 v(cos(v))2 − 2 v cos(v) + s2 sin(v) − cos(s)s2 sin(v))

b1,num = 4 cos(s)s2v2(cos(v))2 − 8 cos(s)s2v2 cos(v) + 4 cos(s)s2v2

− cos(s)s4 sin(v)v − 2 cos(s)s4(cos(v))2 + 2 cos(s)s4 cos(v)

+ cos(s)v5 sin(v) − 2 cos(s)v4(cos(v))2 + 2 cos(s)v4 cos(v)

+s4 sin(v)v + 2 s4(cos(v))2 − 2 s4 cos(v)

−v5 sin(v) + 2 v4(cos(v))2 − 2 v4 cos(v)

b1,den = s2v3(sin(v) cos(s)v2 − v2 sin(v) + 2 v cos(s) − 2 cos(v)v cos(s)

+2 v(cos(v))2 − 2 v cos(v) + s2 sin(v) − cos(s)s2 sin(v)) (43)

We remind that s = θh, where θ is the frequency used in the test problem y′′(x) =
−θ2 y(x).

After determining all three coefficients, we conclude that the order of the method
is six. For the error analysis see 3.11.

3.8 Construction of a method with trigonometric order three

Here we develop a trigonometrically fitted method with trigonometric order three. We
need the method to integrate exactly the set of functions {cos(ωx), sin(ωx), x cos(ωx),
x sin(ωx), x2 cos(ωx), x2 sin(ωx)}.
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The simplified form of the method is given below:

y(x + h) + y(x − h) − 2 y(x) + a0b1h4
(

y(4)(x + h) − 2 y(4)(x) + y(4)(x − h)
)

+ (−b0 y′′(x + h) − b0 y′′(x − h) − b1 y′′(x)
)

h2 = 0 (44)

Now we apply y(x) = eIωx to method (44) and divide by eIωx and get the equation:

(
2 b1a0v

4 + 2 b0v
2 + 2

)
cos (v) + b1v

2 − 2 b1a0v
4 − 2 = 0 (45)

and solve for a0. Then we apply y(x) = x eIωx and after some simplifications we get:

(
4 cos (v) + 2 cos (v) b0v

2 + b1v
2 − 4

)
sin (v)

+v3 (b0 + 1/2 b1) (cos (v) + 1) = 0 (46)

and solve for b0. Then we apply y(x) = x2 eIωx and after some simplifications we get:

−16 (cos (v))2 +
(

b1v
4 + 16 − 4 v2

)
cos (v)

+
(
v3b1 + 4 v

)
sin (v) + 2 b1v

4 − 8 v2 = 0 (47)

After solving the system of the three equations 47–49, we determine the three
coefficients:

a0 = −4
sin (v) v − 4 (cos (v))2 − cos (v) v2 + 4 cos (v) − 2 v2

v3 (v cos (v) + sin (v) + 2 v)

b0 = 1

4

−v cos (v) + 3 sin (v) − 2 v(
sin (v) v − 4 (cos (v))2 − cos (v) v2 + 4 cos (v) − 2 v2

)
v

b1 = 2
− cos (v) v2 − 4 cos (v) − 2 v2 + sin (v) v + 4

v3 (v cos (v) + sin (v) + 2 v)
(48)

3.9 Equivalence between the P-stable method with trigonometric order
two and the method with trigonometric order three

We can see that the coefficients of the trigonometrically fitted method developed in
3.8 are the same as the coefficients of the P-stable method developed 3.7, assuming
that we use the same frequency θ = ω ⇒ s = v.

We remind that s = θh, where θ is the frequency used in the test problem y′′ =
−θ2 y, while v = ωh, where ω is the frequency used in xn eIωx , which are the functions
that the trigonometrically fitted method integrates exactly.

If cPS are the coefficients of the P-stable method and cE F are the corresponding
coefficients of the exponentially fitted method, then lim

s→v
cPS = cEF .
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The Taylor expansion series of the coefficients are given below:

a0 = 1

200
+ 1

1,680
v2 + 1

28,000
v4 + 961

970,200,000
v6 − 491

12,972,960,000
v8

− 68,479

10,594,584,000,000
v10 − 66,150,629

162,097,135,200,000,000
v12

− 264,415,429

21,890,594,658,240,000,000
v14

b0 = 1

12
− 1

2,016
v4 − 109

1,814,400
v6 − 227

53,222,400
v8 − 8,251

54,486,432,000
v10

+ 7,963

1,046,139,494,400
v12 + 547,123

296,406,190,080,000
v14

b1 = 5

6
+ 1

1,008
v4 − 41

907,200
v6 − 47

5,322,240
v8 − 44,923

54,486,432,000
v10

− 24,067

523,069,747,200
v12 − 83,023

148,203,095,040,000
v14 (49)

3.10 The corresponding classical method

The corresponding classical methods is derived by requiring that the method integrates
exactly the sequence of monomials

{1, x, x2, . . . , x p}
for the highest possible p.

By solving the three equations 2 b0 + b1 − 1 = 0, b0 − 1
12 = 0 and a0 − 1

200 = 0,
we get the values of the three coefficients:

a0 = 1

200
, b0 = 1

12
, b1 = 5

6
,

which of course are the same as the limit of the coefficients of every method produced
above when s, v → 0.

3.11 Error analysis

The principal terms of the local truncation error of the methods constructed in 3 are
given below.

In (50) we present the P.L.T.E. of the P-stable method developed with the metho-
dology of Wang in 3.1. The method is equivalent to the exponentially fitted method
of exponential order one, whose P.L.T.E. is the same as in (50), after the substitution
θ = ω. We remind that θ denotes the frequency used in the test P-stability problem
y′′ = −θ2 y and ω denotes the frequency used in the functions that the exponentially
fitted method integrates exactly, here eIωx .

P.L .T .E .PS = h8

6048

(
θ2 y(6) + y(8)

)
(50)
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In (51) we present the P.L.T.E. of the P-stable exponentially fitted method with
exponential order one developed with the methodology of Wang. The P.L.T.E. of the
equivalent method, that is exponentially fitted with exponential order two, is given
from the same formula given below, if we make the substitution θ = ω.

P.L .T .E .PSEF1 = h8

6048

(
ω2θ2 y(4) +

(
θ2 + ω2

)
y(6) + y(8)

)
(51)

In (52) we present the P.L.T.E. of the P-stable exponentially fitted method with
exponential order two developed with the methodology of Wang. The P.L.T.E. of the
equivalent method, that is exponentially fitted with exponential order three, is given
from the same formula given below, if we make the substitution θ = ω.

P.L .T .E .PSEF2 = h8

6048

(
θ2ω4 y′′ +

(
2 θ2 + ω2

)
ω2 y(4)

+
(
θ2 + 2 ω2

)
y(6) + y(8)

)
(52)

The P.L.T.E. of the classical method is given if substitute ω = θ = 0, that is

P.L .T .E .Classical = h8

6,048
y(8) (53)

We also present the principal term of the local truncation error for the special case of
the one-dimensional time-independent Schrödinger equation, which reveals the rela-
tion to the value of energy. In (54) we can see that the P.L.T.E. of the classical method is
proportional to the fourth power of the energy, which results in large error when energy
gets high values. In (55) we see that the P.L.T.E. of the method with trigonometric order
one is proportional to the third power of energy. As the exponential order increases, the
higher power of the energy found in the P.L.T.E. reduces from 3 to 2 for the cases (56)
and (57). Finally when comparing the last two cases, we notice a different coefficient
of E2 which is generally smaller for the case with third exponential order (57).

This comparison reveals the importance of exponential fitting when solving the
Schrödinger equation and especially the importance of high exponential order. This is
the most vital property when it comes to the efficiency of numerical integration.

P.L .T .E .Classical = h8

6,048
A0, where

A0 =
[

yE4 − 4 W E3 + ((6 W 2 + 22 W ′′)y + 12 W ′y′)E2

+((−44 W W ′′ − 28 (W ′)2 − 4 W 3 − 16 (W (4))y

+(−24 W W ′ − 24 (W (3))y′)E + (28 W (W ′)2 + 22 W 2W ′′

+16 W (W (4) + 26 W ′(W (3) + W 4 + (W (6) + 15 (W ′′)2)y

+ 6 (W (5)y′ + (24 W (W (3) + 12 W ′W 2 + 48 W ′W ′′)y′] (54)
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P.L .T .E .EF1 = h8

6048
A1, where

A1 =
[
(−W + W )yE3 + ((−3 W W + 15 W ′′ + 3 W 2)y + 6 W ′y′)E2

+(((7 W ′′ + 3 W 2)W − 3 W 3 − 24 (W ′)2 − 15 W (4) − 37 W W ′′)y

+(−20 W (3) + 6 W ′W − 18 W W ′)y′)E + ((−7 W W ′′ − W 3 − 4 (W ′)2

−W (4))W + W 4 + 22 W 2W ′′ + (28 (W ′)2 + 16 W (4))W + 26 W (3)W ′

+W (6) + 15 (W ′′)2)y + ((−6 W W ′ − 4 W (3))W + 48 W ′W ′′

+ 6 W (5) + 24 W W (3) + 12 W 2W ′)y′] (55)

P.L .T .E .EF2 = h8

36288
A2, where

A2 =
[
((6 W 2 + 6 W

2 − 12 W W + 54 W ′′)y + 12 y′W ′)E2

+((−84 W (4) + (72 W − 180 W )W ′′ + 24 W 2W − 12 W 3

−12 W W
2 − 120 (W ′)2)y − 96 y′W (3)

+(48 W − 72 W )W ′y′)E + ((−12 W + 96 W )W (4) + 156 W ′W (3)

+90 (W ′′)2 + (6 W
2 − 84 W W + 132 W 2)W ′′

+(−48 W + 168 W )(W ′)2 + 6 W 4 + 6 W 2W
2 − 12 W 3W + 6 W (6))y

+36 y′W (5) + (144 W − 48 W )y′W (3)

+(288 W ′W ′′ + (−72 W W + 12 W
2 + 72 W 2)W ′)y′] (56)

P.L .T .E .EF3 = h8

6,048
A3, where

A3 =
[
4 W ′′yE2 + ((−13 W (4) + (15 W − 23 W )W ′′ − 16 (W ′)2

+3 W 2W + W
3 − W 3 − 3 W

2
W )y + (−12 W (3) + (−6 W + 6 W )W ′)y′)E

+(W (6) + (−3 W + 16 W )W (4) + 26 W ′W (3) + 15 (W ′′)2

+(3 W
2 + 22 W 2 − 21 W W )W ′′ + (28 W − 12 W )(W ′)2 + 3 W 2W

2 + W 4

−W
3
W − 3 W 3W )y + (6 W (5) + (−12 W + 24 W )W (3) + 48 W ′W ′′

+ (−18 W W + 6 W
2 + 12 W 2)W ′)y′] (57)

3.12 Stability analysis

The analysis of the P-stability property of the developed methods includes, first of all,
the determination of the interval of periodicity. For the three P-stable methods of the
family, the interval is of course (0,∞). This is also the case for the other three methods,
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since they are equivalent to the three P-stable methods. The interval of periodicity for
the classical method is (0, 7.355).

Analytically, the characteristic equations for the problem y′′ = −θ2 y are given
below:

C.E .EF1 =
(((

−1 − λ2 − 10 λ
)

s2 − 12 (λ − 1)2
)

v4

+
(((

10 λ + 1 + λ2
)

s2 + 12 (λ − 1)2
)

v4 − s4 (λ − 1)2 v2

−12 s4 (λ − 1)2
)

cos (v) − 5 s4 (λ − 1)2 v2 + 12 s4 (λ − 1)2
)/

(
12 v4 (cos (v) − 1)

)
(58)

C.E .EF2 =
(

s2v3 (λ − 1)2 (s − v) (v + s) (cos (v) + 1) +
((

−2 − 2 λ2
)

s2

−4 (λ − 1)2
)

v4 + 8 s2 (λ − 1)2 v2 − 4 s4 (λ − 1)2
)

sin (v)

+
(((

4 s2λ+4 (λ−1)2
)

v4−8 s2 (λ−1)2 v2+4 s4 (λ−1)2
)

cos (v)
) /

(
4 v4 sin (v) (cos (v) − 1)

)

C.E .PS = C.E .PSEF1 =
(−λ2 − 1 + 2 cos (s) λ

)
s2

2 cos (s) − 2
(59)

C.E .PSEF2,num

= (v + s)2
(

−2

3
λ cos (v + s) − 1

6
cos (2 v) − 1

6
λ2 cos (2 v)

+ cos (s) λ + 2

3
λ2 cos (v) + 1

6
λ cos (s + 2 v) + 1

6
cos (−s + 2 v) λ − 1

2

−2

3
λ cos (v − s) − 1

2
λ2 + 2

3
cos (v) (v − s)2

)

C.E .PSEF2,den

= 12
(

2 v4 cos (v − s) +
(
−v5 + v3s2

)
sin (v − s)

−2 v4 cos (2 v) + 2 v4 cos (v + s) +
(
−v2 sin (v + s) + s2 sin (v + s)

+2 sin (v) v2 − 4 v cos (s) + 4 v cos (v) − 2 v − 2 sin (v) s2
)

v3
)

(60)

We omit the characteristic equation of the method with trigonometric order three
due its very complex form.

The roots of the three characteristic equations of the P-stable methods are

λ1 = cos (s) +
√

− (sin (s))2, λ2 = cos (s) −
√

− (sin (s))2
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Fig. 1 v–s Plane for method 3.2 with exponential order one

Fig. 2 v–s Plane for method 3.5 with exponential order two

which apparently give |λ1,2| = 1, thus providing the three (originally developed as
P-stable) methods with a stability region that includes the upper right quadrant.

We produce the v–s plane for the methods, where v = ωh, s = θh, ω comes from
trigonometric fitting and θ comes from the P-stability property. The v–s plane of a
method shows the regions of stability of the method. In Figs. 1–3 we see the stability
regions of the three trigonometrically fitted methods with the dark color. The stability
region for the three P-stable methods includes the upper right quadrant, assuming that
v, s > 0, since their coefficients depend on both v and s. The stability region for
the classical method would be a rectangular with width

√
7.355 = 2.712 and infinite

height, since it doesn’t depend on v.
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Fig. 3 v–s Plane for method 3.8 with exponential order three

The interval of periodicity of the methods can be seen on the v–s plane and more
specifically on the diagonal of the plane, where v = s.

4 Applications and numerical results

4.1 The problems

4.1.1 The resonance problem

The efficiency of the new constructed methods will be measured through the integration
of problem (1) with l = 0 at the interval [0, 15] using the well known Woods–Saxon
potential

V (x) = u0

1 + q
+ u1 q

(1 + q)2 , q = exp

(
x − x0

a

)
, where

u0 = −50, a = 0.6, x0 = 7 and u1 = −u0

a
(61)

and with boundary condition y(0) = 0.
The potential V (x) decays more quickly than l (l+1)

x2 , so for large x (asymptotic region)
the Schrödinger equation (1) becomes

y′′(x) =
(

l(l + 1)

x2 − E

)
y(x) (62)

The previous equation has two linearly independent solutions k x jl(k x) and
k x nl(k x), where jl and nl are the spherical Bessel and Neumann functions. When

123



1122 J Math Chem (2009) 45:1102–1129

x → ∞ the solution takes the asymptotic form

y(x) ≈ A k x jl(k x) − B k x nl(k x)

≈ D[sin(k x − π l/2) + tan(δl) cos (k x − π l/2)], (63)

where δl is called scattering phase shift and it is given by the following expression:

tan (δl) = y(xi ) S(xi+1) − y(xi+1) S(xi )

y(xi+1) C(xi ) − y(xi ) C(xi+1)
, (64)

where S(x) = k x jl(k x), C(x) = k x nl(k x) and xi < xi+1 and both belong to
the asymptotic region. Given the energy we approximate the phase shift, the accurate
value of which is π/2 for the above problem.

We will use four different values for the energy: (i) 989.701916, (ii) 341.495874,
(iii) 163.215341 and (iv) 53.588872. As for the frequency w we will use the suggestion
of Ixaru and Rizea [26]:

w =
{√

E − 50 x ∈ [0, 6.5]√
E x ∈ [6.5, 15] (65)

4.1.2 Nonlinear problem

The nonlinear problem is given by y′′ = −100 y + sin(y), with initial conditions:
y(0) = 0, y′(0) = 1 and interval of integration [0, 20 π ]. We use y(20 π) =
3.92823991 · 10−4, see [78]. We estimate the frequency ω = 10.

4.2 The results

We are presenting the results of the produced methods for the two problems mentioned
above. In Figs. 4–7 we can see the accuracy of the methods computed as − log10(max
error at the end of interval) for the Schrödinger equation. We conclude, first of all,
that when the value of energy increases, so does the error of the method. We also see
that the higher the trigonometric order of the method, the more efficient the method
is. The difference in efficiency between the methods of different trigonometric order
is higher when the value of the energy used for the integration is higher. In Fig. 8 we
can see the efficiency of the methods versus the value of the energy. The figure shows
the difference in the efficiency of each method, while the energy changes values. We
see that the decrease in accuracy, while the energy value increases, is lower when the
trigonometric order increases, so the methods with high trigonometric order can be
used effectively when a high value of energy is used.

These results confirm the local truncation error analysis of the methods, presented
in the previous sections, revealing the critical role of high trigonometric order for the
numerical integration of the Schrödinger equation.
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Fig. 4 Efficiency for the Schrödinger equation (E=989.701916)

Fig. 5 Efficiency for the Schrödinger equation (E=341.495874)

However high trigonometric order doesn’t always give higher efficiency in all ODEs
with oscillating solutions. For example at the integration of the nonlinear problem,
we see that when increasing the trigonometric order from two to three, the efficiency
decreases slightly, though it remains higher than in the classical case (Fig. 9).

The three P-stable methods, with coefficients that depend on both parameters
s = θh and v = ωh, in problems that have one dominant frequency, can only be
effective, when both θ and ω are equal to that frequency. Thus there is no point in
giving θ a different value. So in the case when θ = ω, the derived method is the
equivalent trigonometrically fitted method.
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Fig. 6 Efficiency for the Schrödinger equation (E=163.215341)

Fig. 7 Efficiency for the Schrödinger equation (E=53.588872)

5 Conclusions

We developed a family of six methods, the three of which are P-stable with trigo-
nometric orders 0,1,2 and the other have trigonometric orders 1,2,3. We showed
the equivalency of the three pairs, as regards the coefficients, the error analysis
and the stability analysis. We also showed the high efficiency gained by increasing
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Fig. 8 Accuracy versus energy for the Schrödinger equation

Fig. 9 Efficiency for the nonlinear problem

the exponential order of a method especially for the integration of the Schrödinger
equation.
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